Shan-Lu Liu

MD, PhD, Elected Fellow, American Academy of Microbiology

Program Director, Viruses and Emerging Pathogens Program, OSU Infectious Diseases Institute; Associate Director, Center for Retrovirus Research; Professor 

Contact

Veterinary Medicine Academic Building
1900 Coffey Road
Columbus, OH 43210
Map Link

Department

Veterinary Biosciences

Center For Retrovirus Research

Professional Training and experience

  • Professor, The Ohio State University
  • Associate Professor, University of Missouri-Columbia
  • Assistant Professor and Canada Research Chair, McGill University
  • Postdoctoral Fellow, University of Washington
  • PhD in Virology and Gene Therapy, University of Washington and Fred Hutchinson Cancer Research Center
  • MS in Viral Infectious Diseases, Chinese Academy of Preventive Medicine (now China CDC)
  • MD Henan Medical University (now Zhengzhou University School of Medicine)

Research Interests

  • Host restriction to viral infection and viral countermeasures
  • Viral cell-to-cell transmission
  • Innate/adaptive immunity and sensing to viral infection
  • Mechanisms of viral membrane fusion and entry
  • Cell signaling, viral oncogenes, and human lung cancer
  • Model viruses of study – HIV, Ebola virus, SARS-CoV-2, Influenza A virus, Zika virus, hepatitis C virus, and oncogenic sheep retroviruses


Research News and Interviews

NIH Director’s Blog

https://directorsblog.nih.gov/2022/03/01/how-covid-19-immunity-holds-up-over-time/

How COVID-19 Immunity Holds Up Over Time

 

Scientific America

https://www.scientificamerican.com/article/omicrons-surprising-anatomy-explains-why-it-is-wildly-contagious/?amp;text=Omicron%27s

Omicron’s Surprising Anatomy Explains Why It Is Wildly Contagious

 

Science News

https://www.sciencenews.org/article/covid-coronavirus-omicron-variant-mutation-infectious

How omicron’s mutations make it the most infectious coronavirus variant yet

 

American Society for Microbiology

https://www.sciencenews.org/article/covid-coronavirus-omicron-variant-mutation-infectious/

Comments on "Considerable escape of SARS-CoV-2 Omicron to antibody neutralization

 

AP News

https://apnews.com/article/covid-science-health-united-states-pandemics-72462053f8d60fd548cf34377864100b

Dominant coronavirus mutant contains ghost of pandemic past

 

National Geographic

https://www.nationalgeographic.com/magazine/article/why-omicron-variants-ba4-and-ba5-are-causing-fresh-us-outbreaks

Why Omicron variants BA.4 and BA.5 are causing fresh U.S. outbreaks

 

NBC National News

https://www.nbcnews.com/health/health-news/new-coronavirus-subvariants-surpass-ba5-dominance-rcna57294

BA.5 is no longer dominant in the U.S. for the first time since July, as two new subvariants take over

 

The Daily Beast

https://www.thedailybeast.com/scientists-fear-bq1-covid-variants-are-deadly-like-the-2020-wave?ref=scroll

Scientists Fear new COVID Strains Are Deadly - Just Like 2020 Wave

 

AP News

https://apnews.com/article/science-health-china-covid-306b688d84e31a9462f82d0ead1f4584

China's COVID-19 surge raises odds of new coronavirus mutant

 

South China Morning Post

https://www.scmp.com/news/china/science/article/3205243/china-can-expect-repeat-covid-infections-new-omicron-strains-way-scientists-say

China can expect repeat COVID infectioins with new Omicron strains on the way, scientists say

 

CBS News

https://www.cbsnews.com/news/bf7-new-omicron-coronavirus-variant-covid/

BF.7: What to know about the Omicron COVID variant

 

Fortune

https://fortune.com/well/2023/01/27/meet-orthus-ch11-new-omcrion-covid-variant-delta-mutation-deltacron-convergent-evolution/

What's CH.1.1? Meet 'Orthrus,' a new wildcard Omicron strain with a concerning Delta mutation

 

NBC News

https://www.nbcnews.com/health/health-news/eg5-coronavirus-variant-dominant-symptoms-spread-rcna98768

What to know about the EG.5 coronavirus subvariant, now dominant in the U.S.

 

Fortune

https://fortune.com/well/2024/01/08/covid-omicron-variants-pirola-ba286-jn1-more-severe-disease-lung-gi-tract-symptoms/

New, highly mutated COVID variants 'Pirola' BA.2.86 and JN.1 may cause more severe disease, new studies suggest

 

The Sun (UK edition)

https://www.thesun.co.uk/health/25297693/covid-jn-ba-omicron-variant-severe-lung-cells/

'ELEVATED THREAT' Worst bout of COVID ever? New variant 'fuses to lung cells faster - and may be more severe'

 

BBC News

https://www.bbc.com/future/article/20240719-why-covid-19-is-spreading-this-summer

Why COVID-10 is spreading this summer

 

National Geographic

https://www.nationalgeographic.com/science/article/covid-flirt-variants-summer-surge-update

We're having a COVID summer surge. How worried are experts about winter?

 

Research Projects


1. IFITM restriction of viral infection
 
The interferon (IFN) system is the first line of host defense against pathogen invasion, including viral infections. Shortly after IFN induction or viral infection, cells express hundreds of IFN-stimulated genes (ISGs) that modulate diverse biological processes, including the establishment of antiviral states. The IFN-induced transmembrane (IFITM) protein family belongs to a group of small ISGs (~15 kD) that block the early stages of viral replication. Specifically, IFITM proteins restrict entry of a wide range of viruses, including highly pathogenic influenza A virus (IAV), SARS coronarvirus, Ebolavirus (EBOV), and HIV.
 
Recent work from our lab and others showed that IFITM proteins inhibit cell-cell fusion by IAV HA, Semliki Forest virus (SFV) E1, and vesicular stomatitis virus (VSV) G proteins, which represent class I, II and III viral fusion proteins, respectively. Interestingly, we have found that some viruses are more sensitive than others to inhibition by particular types of IFITMs, suggesting that IFITM-mediated restriction of viral entry can be virus-strain specific and IFITM-species dependent (Li et al, PLoS Pathogens 2013). Indeed, we showed that IFITM2 and IFITM3, but not IFITM2, specifically interact with HIV-1 Env, thus inhibiting its processing and viral infectivity (Yu et al, Cell Reports, 2015). Currently, we are using a variety of biophysical, biochemical, forward genetics, as well as molecular approaches to dissect the distinct mechanisms of IFITM restriction of viral entry and cell-cell spread. The model viruses applied to this project include IAV, Ebola virus (EBOV), and HIV-1.
 
 
 2. Viral entry, fusion and cell-to-cell transmission
 
Entry is the first step of viral replication and essential for viral pathogenesis. While the core mechanism of virus fusion and entry is known, it remains poorly understood how exactly viral fusion proteins are activated and how the entry process is controlled for most pathogenic animal viruses. The objective of this project is to better understand the mechanisms of membrane fusion and entry by EBOV and Zika virus. We are particularly focused on cellular and viral factors in the fusion triggering and entry process, including receptor binding, low pH, and additional cellular and viral determinants.
 
EBOV is a highly pathogenic filovirus that causes severe hemorrhagic fever in humans, with a fatality rate of up to 90%. Currently, there is no effective antiviral drug or FDA-approved vaccine against this deadly virus. Entry of EBOV into host cell is mediated by its sole glycoprotein, known as GP. It is believed that EBOV enters host cells through macropinocytosis, which is initiated by the binding of EBOV GP to attachment factors or cell surface receptors, such as DC-SIGN and TIM-1.Following the uptake of viral particles into late endosome and lysosome, GP is cleaved by cellular proteases, especially cathepsin L (CatL) and B (CatB), to a 19 kDa intermediate. The 19 kDa species then binds to human Niemann-Pick C1 (NPC1), the newly identified intracellular receptor of EBOV in endolysosomes, where virus-cell membrane fusion takes place. One recent interesting finding from our lab, in collaboration with Fredric Cohen’s lab at Rush University, is that low pH per se is not a trigger but that low pH-dependent cathepsin’s activity is critical for GP-mediated fusion (Markosan and Miao et al, PLoS Pathogens, 2016). Current experiments are focused on the exact mechanisms of triggering and fusion, with an ultimate goal to develop novel fusion inhibitors against EBOV. Similar efforts have been put on Zika virus, a flavivirus family member with distinct biological properties that are associated with microcephaly and neuronal damaging.
 
Because cell-to-cell transmission has been shown to be more efficient than the cell-free virus infection, we are also currently investigating viral and cellular factors that regulate EBOV and HIV-1 cell-to-cell transmission.
 
3. TIM, SERINC and HIV Nef
 
We recently discovered that TIM-family proteins potently inhibit release of HIV and other viruses in addition to promoting viral entry (Li et al. PNAS USA, 2014).  Specifically, we showed that expression of TIM-1 protein potently blocks HIV-1 Gag release, resulting in accumulation of mature viral particles on the plasma membrane. Notably, TIM-1 mutants deficient for PS binding are incapable of blocking HIV-1 release. The inhibitory effect of TIM family proteins on viral release can be extended to some other PS receptors, including AxL and RAGE, underscoring a general role of PS in HIV and other viral infections. 

More recently, we showed that the Nef proteins of HIV-1 and other lentiviruses antagonize TIM-mediated restriction. HIV-1 Nef does not down-regulate the overall level of TIM-1 expression but promotes its internalization from the plasma membrane and sequesters its expression in intracellular compartments. Interestingly, coexpression of SERINC3 or SERINC5 increases the expression of TIM-1 on the plasma membrane and potentiates TIM-mediated inhibition of HIV-1 production (Li, et al, PNAS, 2019). Current project is to understand how WERINC proteins functionally interact with TIM-1, and perhaps other lipid modulating proteins, to restrict infection by lentiviruses and other viral pathogens, including through IFN and NF-kB pathway (Zeng, et al, Science Signaling, 2021).
  
 
4. Immune response to SARS-CoV-2 infection and vaccination: convergent evolution and immune imprinting
 
Understanding the complexities of the immune response to SARS-C0V-2, including convergent evolution and immune imprinting, is critical for developing effective public health strategies and improving vaccine design to combat the ongoing pandemic and future infectious disease threats (Evans and Liu, J Immunol, 2024). Upon infection, the human immune system responds by activating both innate and adaptive immune responses. Vaccines developed against SARS-CoV-2 aim to mimic the virus to elicit an immune response without causing disease. COVID-19 vaccination has proven effective in preventing severe disease, hospitalization, and death, and in reducing the spread of the virus. However, continued SARS-CoV-2 evolution, notably convergent mutations in the spike protein, generates variants with enhanced immune evasion, resulting in reduced vaccine efficacy (Qu et al, NEJM, 2022; Evans et al, Cell Host Microbe, 2022; Faraone et al, Cell Reps, 2023). In addition, immune imprinting, also known as original antigenic sin, occurs when the immune system preferentially recalls and mounts a response based on the first encounter with an antigen, impacting the effectiveness of vaccines and natural immunity. Current efforts in the lab focus on understanding the pattern of SARS-CoV-2 evolution, the mechanisms of immune imprinting, and designing strategies for novel vaccine development.

 

PROFESSIONAL SOCIETY SERVICE

  • 2024-2028, Subcommittee of Election, American Academy of Microbiology (AAM)
  • 2025-2026, President, American Society for Virology (ASV)
  • 2024-2025, President-elect, American Society for Virology (ASV)
  • 2024, Chair and Local Host, Organizing Committee, 43rd American Society for Virology Annual Meeting, June 24-28, 2024, Columbus, Ohio
  • 2024, Co-chair, International Conference on Life Sciences and 19th SCBA/14th CBIS Joint Biennial Symposium, July 25-30, Guiyang, China
  • 2022-2023, President, Society of Chinese Bioscientists in America (SCBA)
  • 2020, Chair, Opening session, Viruses 2020 - Novel Concepts in Virology, Barcelona, Spain, February 5-7, 2020
  • 2019-2022, program committee, American Society for Virology (ASV)
  • 2019, Organizer, 1st Midwest Virology Symposium, October 11-13, Columbus, Ohio, 2019
  • 2017-2019, Chair, Graduate Student/Postdoctoral Fellow Travel Award Committee, American Society for Virology (ASV)
  • 2016, Session Chair, Nature Microbiology Conference on Viral Infection and Immune Response, October 21-23, 2016
  • 2015-2017, Graduate Student/Postdoctoral Fellow Travel Award Committee, American Society for Virology (ASV)
  • 2014, Session Chair, Keystone Symposia Conference: Virion Assembly and Post-Assembly Maturation, The Ins and Outs of Viral Infections: Entry, Assembly, Exit and Spread. March 30-April 4, 2014, Breckenridge, CO, USA
  • 2012-2015, Program Planning Committee and Abstract Reviewer, American Society for Virology (ASV)
  • 2008-2012, Membership Committee, American Society for Virology (ASV)

 

SCIENTIFIC HONORS, AWARDS, and PRIZES

  • 2025-2026, President, American Society for Virology (ASV)
  • 2024-2025, President-elect, American Society for Virology (ASV)
  • 2022-2023, President, Society of Chinese Bioscientists in America (SCBA)
  • 2020-  Elected Fellow, American Association for the Advancement of Science (AAAS)
  • 2020   Zoetis Award for Veterinary Research Excellence, The Ohio State University College of Veterinary Medicine
  • 2018-2020, Founding President, Association of Chinese Virology in America (ACVA) and Society of Chinese Bioscientists in America (SCBA) - Virology Division
  • 2018-  Councilor, Seattle Chinese Biomedical Association
  • 2018   Elected Fellow, American Academy of Microbiology (AAM)
  • 2005-2010     Canada Research Chair in Virology and Gene Therapy, McGill University, Montreal, Canada

 

PROFESSIONAL SOCIETY MEMBERSHIP

  • 2015 - American Association for the Advancement of Science (AAAS)
  • 2012 - American Society for Biochemistry and Molecular Biology (ASBMB)
  • 2009 - Society of Chinese Bioscientists in America (SCBA)
  • 2015 - Chinese Biological Investigator Society (CBIS)
  • 2007 - American Society for Virology (ASV)
  • 2005 - American Society for Microbiology (ASM)

 

RESEARCH GRANT REVIEW

  • National Institutes of Health (NIH, Virology B study section, standing member, 2016-2022)
  • Wellcome Trust (UK)
  • Medical Research Council (UK)
  • National Institutes of Health (NIH), COVID-19 Emergency FOA review panel (2020, 2021)
  • National Institutes of Health (NIH, Virology B study section, ad hoc reviewer, 2014-2016)
  • Canadian Institutes of Health Research (CIHR) (Canada)
  • Natural Sciences and Engineering Research Council of Canada (NSERC) (Canada)
  • Canada Research Chair Program (CRC) (Canada)
  • INSERM (France)
  • Health and Medical Research Fund (HMRF) (Hong Kong)
  • Research Grants Council (Hong Kong)

 

EDITORIAL BOARD

  • Editor, Journal of Virology (2023- )
  • Guest Editor, PNAS (2022- )
  • Guest Editor, mBio (2021- )
  • Associate Editor, Viruses (2017- )
  • Guest Associate Editor, PLoS Pathogens (2018- )
  • Guest Editor, Special issue “Frontiers on Virology and COVID-19”, Cell & Bioscience (2021- )
  • Guest Editor, Special issue “Viral Glycoprotein Incorporation” in Viruses (2013)
  • Guest Editor, Special issue "Viral Mechanisms of Viral Fusion and Applications in Antivirals", Viruses (2019)
  • Editorial Board Member, Journal of Virology (2014- )
  • Editorial Board Member, Virology (2013-2016)
  • Editorial Board Member, Viruses (2012-)

 

AD HOC JOURNAL REVIEWS

Science, PNAS, Cell, Science Advance, Journal of Virology, Journal of Immunology, Virology, New England Journal of Medicine, The Lancet, The Lancet Respiratory Medicine, mBio, iScience, Cancer Research, Cell Reports, Journal of Biological Chemistry, Journal of Clinical Investigation, Journal of General Virology, Journal of Virological Methods, Current Opinions in Virology, Cell & Bioscience, JCI Insight, European Journal of Cancer, FASEB Journal, Viruses Biochemistry, Cellular and Molecular Immunology, Cancer Research, Molecular Cancer, Retrovirology, Vector-Borne and Zoonotic Diseases, AIDS Research and Retroviruses, PLoS

Neglected Tropical Diseases, PLoS Pathogens, ACS Nano, Journal of Medical Virology, Emerging Microbes and Infections, Nature Microbiology, Nature Immunology, Journal of Clinical Investigation

Publications

Selected Publications:

  • Li, P, Faraone, C. C. Hsu, M. Chamblee, Y.-M. Zheng, J. C. Carlin, J. S. Bednash, J. C. Horowitz, R. K. Mallampalli, DL. J. Saif, E. M. Oltz, D. Jones, R.J. Gumina, K. Xu, and S.-L. Liu*. 2024. Characteristics of JN.1-derived SARS-CoV-2 Subvariants SLip, FLiRT, and KP.2 in Neutralization Escape, Infectivity and Membrane Fusion . Cell Reps. 43: 114520.
  • Li, P, Y Liu, Faraone, C. C. Hsu, M. Chamblee, Y.-M. Zheng, J. C. Carlin, J. S. Bednash, J. C. Horowitz, R. K. Mallampalli, DL. J. Saif, E. M. Oltz, D. Jones, R.J. Gumina, and S.-L. Liu*. 2024. Distinct Patterns of SARS-CoV-2 BA.2.87.1 and JN.1 Variants in Immune Evasion, Antigenicity and Cell-Cell Fusion. 2024. mBio. 8;15(5):e0075124.
  • Qu, P, K. Xu, J. Faraone, N. Goodarzi, Y.-M. Zheng, J. C. Carlin, J. S. Bednash, J. C. Horowitz, R. K. Mallampalli, DL. J. Saif, E. M. Oltz, D. Jones, R.J. Gumina, and S.-L. Liu*. 2024. Immune Evasion, Infectivity, and Fusogenicity of SARS-CoV-2 Omicron BA.2.86 and FLip Variants. Cell.187: 585-595.
  • Faraone, J.N, X. Wang, P. Qu, Y.-M. Zheng, E. Vincent, H. Xu*, and S.-L. Liu*. 2024. Neutralizing Antibody Response to Bivalent mRNA Vaccine Against SARS-CoV-2 XBB Variants in SIV-Infected Rhesus Macaques. J Med Virol. 96(3):e29520.
  • Evans, J. P, and S.-L. Liu*. 2023. Challenges and Prospects in Developing Future SARS-CoV-2 Vaccines: Overcoming Original Antigenic Sin and Inducing Broadly Neutralizing Antibodies. J Immunol. 211(10):1459-1467
  • Faraone, J and S.-L. Liu*. 2023. Immune Imprinting as a Barrier to Effective COVID-19 Vaccines. Cell Rep Med. 4(11):101291.
  • Faraone, J, P. Qu, N. Goodarzi, Y.-M. Zheng, C. Carlin, L. J. Saif, E. M. Oltz, D. Jones, R.J. Gumina, and S.-L. Liu*. 2023. Immune Evasion and Membrane Fusion of SARS-CoV-2 XBB Subvariants EG.5.1 and XBB.2.3. Emerging Microbes & Infection. 12(2):2270069.
  • Faraone, J, P. Qu, Y.-M. Zheng, C. Carlin, D. Jones, A. Panchal, L. J. Saif, E. M. Oltz, R.J. Gumina, and S.-L. Liu*. 2023. Continued Evasion of Neutralizing Antibody Response by Omciron XBB.1.6. Cell Reports. 42(10):113193.
  • Qu, P, J. Faraone, J. P. Evans, Y.-M. Zheng, J. C. Carlin, M. Anghelina, P. Stevens, S. Fernandez, D. Jones, A. Panchal, L. J. Saif, E. M. Oltz, B. Zhang, T. Zhou, K. Xu, R.J. Gumina, and S.-L. Liu*. 2023. Enhanced Evasion of Neutralizing Antibody Response to Omicron XBB.1.5, CH.1.1 and CA.3.1 Subvariants. Cell Reports. 42, 11244.
  • Liu, S.-L*, L. Su, K. Luo, K. Li, G. Chen, X. Zhang, B. Zhao, R. Yuan, Y. Yang, L. Zou, C. He, J. Yang, L. He, Y. Li, D. Wang, Z. Suo, G. P. Kusakawa, and Y. Huang Y. US "China initiatives" promote racial bias. 2023. Science, May 26;380(6647):804.
  • Qu, P, J. P. Evans, C. Kurhade, C. Zeng, Y.-M. Zheng, K. Xu, P.-Y. Shi, X. Xie, and S.-L. Liu*. 2023. Determinants and Mechanisms of the Low Fusogenicity and Endosomal Entry of Omicron Subvariants. mBio. e03176-22.
  • Faraone, J., Qu, P, J. P. Evans, Y.-M. Zheng, J. C. Carlin, M. Anghelina, P. Stevens, S. Fernandez, D. Jones, G. Lozanski, A. Panchal, L. J. Saif, E. M. Oltz1, R.J. Gumina, and S.-L. Liu*. 2023. Enhanced Neutralization Resistance of SARS-CoV-2 Omicron XBB, BR.2 and BA.2.3.20 Subvariants. Cell Reports Medicine. 4(5):101049.
  • Xu, J, Y.-M. Zhang, P. Qu, M. M. Shamseldi, S. Yoo, J. Misny, I. Thongpan, M. KC, J. M. Hall, J. P. Evans, M. Eltobgy, M. Lu, C. Ye, M. Chamblee, X. Liang, L. Martinez-Sobrido, A. Amer, J. Yount, P. N Boyaka, M. E. Peeples, S.-L. Liu, P. Dubey, J. Li. 2023. A next generation trivalent MMS vaccine induces durable and broad protection against SARS-CoV-2 variants of concern. PNAS. 120(41): e2220403120.
  • Brown, G. Gunsch, K. Corps, S. Chaiwatpongsakorn, M. KC, M. Lu, R. Deora, M.E. Peeples, J. Li, K. Oestreich, S.-L. Liu, J. Yount, and P. Dubey. 2023. Prime-Pull Immunization of Mice with a BcfA-Adjuvanted Vaccine Elicits Sustained Mucosal Immunity That Prevents SARS-CoV-2 Infection and Pathology. 2023. J Immunol. 210(9):1257-1271.
  • Qu, P, J. P. Evans, J. Faraone, Y.-M. Zheng, C. Carlin, M. Anghelina, P. Stevens, S. Fernandez, D. Jones, G. Lozanski, A. Panchal, L. J. Saif, E. M. Oltz1, K. Xu, R.J. Gumina, and S.-L. Liu*. 2022. Enhanced Neutralization Resistance of SARS-CoV-2 Omicron BQ.1, BQ.1.1, BA.4.6, BF.7 and BA.2.75.2 Subvariants. Cell Host & Microbe. 31(1):9-17.e3.
  • Qu, P, J. P. Evans, Y.-M. Zheng, C. Carlin, L. J. Saif, E. M. Oltz, K. Xu, R. J. Gumina, and S.-L. Liu. * 2022. Evasion of Neutralizing Antibody Responses of the SARS-CoV-2 Omicron BA.2.75 Variants. Cell Host & Microbe. S1931-3128(22)00471-1.
  • Evans, J. P, C. Zeng, P. Qu, Y.-M. Zheng, C. Carlin, J. S. Bednash, G. Lozanski, R. Mallampalli, L. J. Saif, E. M. Oltz, P. Mohler, R. J. Gumina, and S.-L. Liu. * 2022. Neutralization of SARS-CoV-2 Deltacron and BA.3 Variants. New England Journal of Medicine. 386: 2340-2342.
  • Qu, P, J. Faraone, J. P. Evans, Y.-M. Zheng, C. Carlin, J. S. Bednash, G. Lozanski, R. Mallampalli, L. J. Saif, E. M. Oltz, P. Mohler, R. J. Gumina, and S.-L. Liu. * 2022. Neutralization of the SARS-CoV-2 Omicron BA.4/5 and BA.2.12.1 Subvariants. New England Journal of Medicine. 386: 2526-2528.
  • Qu, P, J. Faraone, J. P. Evans, Y.-M. Zheng, L. Yu, Q. Ma, C. Carlin, G. Lozanski, L. J. Saif, E. M. Oltz, R. J. Gumina, and S.-L. Liu. * 2022. Durability of Booster mRNA Vaccine against SARS-CoV-2 BA.4/5 and BA.2.12.1 Subvariants. New England Journal of Medicine. In Press. Sept 7, 2022.
  • Evans, J. P, C. Zeng, P. Qu, J. Faraone, Y.-M. Zheng, C. Carlin, J. S. Bednash, T. Zhou, G. Lozanski, R. Mallampalli, L. J. Saif, E. M. Oltz, P. Mohler, K. Xu, R. J. Gumina, and S.-L. Liu. * 2022. Neutralization of SARS-CoV-2 Omicron Sub-lineages BA.1, BA.1.1 and BA.2 and BA. Cell Host & Microbe. S1931-3128(22)00220-7.
  • Cui, Z, C. Zeng, F. Huang, F. Yuan, J. Yan, Y. Zhao, J. Huang, H. F. Staats, Jeffrey I. Everitt, G. D. Sempowski, H. Wang1, Y. Dong3*, S.-L. Liu*, and Q. Wang*. 2022. Cas13d knockdown of lung protease Ctsl prevents and treats SARS-CoV-2 infection. Nature Chemical Biology. July 25, 2022. doi: 10.1038/s41589-022-01094-4.
  • Tang, J., C. Zeng, T. M. Cox,C. Li, Y. M. Son, I. S. Cheon, Y. Wu, S. Behl, J. J. Taylor, R. Chakaraborty, A. J. Johnson, D. N Shiavo, J. P. Utz, J. S. Reisenauer, D. E. Midthun, J. J. Mullon, E. S. Edell, M. G. Alameh, L. Borish, M. H. Kaplan, D. Weissman, R. Kern, H. Hu, R.  Vassallo, S.-L. Liu*, and J. Sun*. 2022. Respiratory mucosal immunity against SARS-CoV-2 following mRNA vaccination. Science Immunology. July 19, 2022. doi: 10.1126/sciimmunol.add4853.
  • Azar, J., J. P. Evans, M. Sikorski, K. Chakravarthy, S. McKenney, I. Carmody, C. Zeng, R. Teodorescu, N. J. Song, J. Hamon, D. Bucci, M. Velegraki, C. Bolyard, K. P. Weller, S. Reisinger, S. A. Bhat, K. J. Maddocks, R. J. Gumina, A. N. Vlasova, E. M. Oltz, L. J. Saif, D. Chung, J. A. Woyach, P. G. Shields, S.-L. Liu*, Z. Li*, M. P. Rubinstein*. 2022. Suppression of de novo antibody responses against SARS-CoV2 and the Omicron variant after mRNA vaccination and booster in patients with B cell malignancies undergoing active treatment, but maintenance of pre-existing antibody levels against endemic viruses. JCI Insight. In Revision.
  • Abdelhamid, A. G, J. N. Faraone, J. P. Evans, S.-L. Liu, and A. E. Yousef. 2022. SARS-CoV-2 and Emerging Foodborne Pathogens: Intriguing Commonalities and Obvious Differences. Pathogens. July 27, 2022. doi.org/10.3390/pathogens11080837.
  • Evans, J. P., C. Zeng, C. Carlin, G. Lozanski, L. J. Saif, E. M. Oltz, R. J. Gumina, and S.-L. Liu*. 2022. Neutralizing Antibody Responses Elicited by SARS-CoV-2 mRNA Vaccination Wane Over Time and are Boosted by Breakthrough Infection. Sci Transl Med. 14 (637): eabn8057.
  • Zeng C, J.P., Evans, K. Chakravarthy, P. Qu, S. Reisinger, N.-J. Song N, M.P. Rubinstein M, P.G. Shields, Z. Li Z, and S.-L. Liu*. 2022. COVID-19 mRNA booster vaccines elicit strong protection against SARS-CoV-2 Omicron variant in patients with cancer. Cancer Cell. Dec 30: S1535-6108(21)00688-7.
  • Zeng C, J. P., Evans JP, T, King, Y.-M. Zheng, E. M., Oltz, S. P. J, Whelan, L. J. Saif, M. E., Peeples ME, and S.-L. Liu*. 2021. SARS-CoV-2 Spreads through Cell-to-Cell Transmission. Proc. Natl. Acad. Sci. USA. 119(1): e2111400119.
  • Zeng, C, J. P. Evans, J. N. Faraone, P. Qu, Y.-M. Zheng, L. J. Saif, E. M. Otlz, G. Lozanski, R. J. Gumina and S.-L. Liu*. 2021. Neutralization of SARS-CoV-2 Variants of Concern Harboring Q677H. mBio. 12(5): e0251021.
  • Zeng, C, A. A. Waheed, T. Li, J. Yu, Y.-M. Zheng, J. Yount, H. Wen, E.O. Freed, and S.-L. Liu*. 2021. SERINC Proteins Potentiate Antiviral Type I IFN Induction and Proinflammatory Signaling Pathways. Science Signaling 14: eabc7611, Sept 14.
  • Zeng, C, J. P. Evans, S. Reisinger, J. Woyach, C. Liscynesky, Z. E. Boghdadly, M. P. Rubinstein, K. Chakravarthy, L. Saif, E. M. Oltz, R. J. Gumina, *Peter G. Shields, Z. Li*, and S.-L. Liu*. 2021. Impaired Neutralizing Antibody Response to COVID-19 mRNA Vaccine in Cancer Patients. Cell & Bioscience. 11(1):197.
  • Gyang, TC*, J. P. Evans, J. Miller, K. Alcorn, J. Peng, E. Bell, C. Zeng, R. J. Gumina, B. Segal, and S.-L. Liu*. 2021. Efficacy of SARS-CoV-2 Vaccination in Patients with Multiple Sclerosis. Multiple Sclerosis Journal—Experimental, Translational and Clinical. 8(1): 20552173221087357.
  • Lu, M, P. Dravid, Y. Zhang, S. Trivedi, A. Li, O. Harder, K.C. Mahesh, S. Chaiwatpongsakorn, A. Zani, A. Kenney, C. Zeng, C. Cai, C. Ye, X. Liang, M. Shimamura, S.-L. Liu, P. N Boyaka, J. Qiu, L. Martinez-Sobrido, J. Yount, M. Peeples, Kapoor, S. Niewiesk, and J. Li. 2021. A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc. Natl. Acad. Sci. USA. Mar 23;118(12): e2026153118.
  • Evans, J. P, and S.-L. Liu*. 2021. Role of host factors in SARS-CoV-2 Entry. J. Biol. Chem. 297(1):100847.
  • Kim, E, Z. Attia, R. M. Woodfint, C.Zeng, S. Kim, H. E. Steiner, R. K. Shukla, N. P. M. Liyanage, J. Li, G. J. Renukaradhya, A. A. Satoskar, A. O. Amer, S.-L. Liu, E. Cormet-Boyaka, and P. N. Boyaka. 2021. Inhibition of elastase enhances the adjuvanticity of alum and promotes anti–SARS-CoV-2 systemic and mucosal immunity. Proc. Natl. Acad. Sci. USA. 118 (34) e2102435118.
  • Lu M, Y. Zhang, P. Dravid, A. Li, C. Zeng, K C Mahesh, S. Trivedi, H. Sharma, S. Chaiwatpongsakorn, A. Zani, A. Kenney, C. Cai, C. Ye, X. Liang, J. Qiu, L. Martinez-Sobrido, J. S. Yount, P. N. Boyaka, S.-L. Liu, M. E. Peeples, A. Kapoor, J. Li J. 2021. A methyltransferase-defective VSV-based SARS-CoV-2 vaccine candidate provides complete protection against SARS-CoV-2 infection in hamsters. J. Virol. doi: 10.1128/JVI.00592-21
  • Zeng, C, J. P. Evans, R. Pearson, P. Qu, Y.-M. Zheng, R. T. Robinson, L. Hall-Stoodley, J. Yount, S. Pannu, R. K. Mallampalli, L. Saif, E. Oltz, G. Lozanski, and S.-L. Liu*. 2020. Neutralizing antibody against SARS-CoV-2 spike in COVID-19 patients, health care workers and convalescent plasma donors. JCI Insight. 5(22): e143213.
  • Wu, Y, W. Ho, Y. Huang, D.-Y. Jin, S. Li, S.-L. Liu, X. Liu, J, Qiu, Y. Sang, Q. Wang, K.-Y. Yuen, and Z.-M. Zheng. 2020. SARS-CoV-2 is an appropriate name for the new coronavirus. The Lancet 395 (10228): 949-950.
  • Liu, S.-L.*, L. Saif, S. R. Weiss, and L. Su*. 2020. No Credible Evidence Supporting Claims of the Laboratory Engineering of SARS-CoV-2. Emerg. Microbes & Infect. 9(1):505-507. doi: 10.1080/22221751.2020.1733440.
  • M. Chemudupati, A. Smith, R. Fillinger, A. Kenney, L. Zhang, A. Zani, S.-L. Liu, M. Z. Anderson, A. Sharma, and J. Yount. 2020. Butyrate Reprograms Expression of Specific Interferon- Stimulated Genes. J. Virol. 94 (16). E00326-20.
  • Zeng, C, A. A. Waheed, T. Li, J. Yu, Y.-M. Zheng, J. Yount, H. Wen, E.O. Freed, and S.-L. Liu*. 2020. SERINC Proteins Potentiate Antiviral Type I IFN Induction and Proinflammatory Signaling Pathways. Proceedings. 2020, 50, 51; doi:10.3390.
  • Liu, S.-L*. New Virus in China Requires International Control Effort. 2020. Nature 577(7791): 472.
  • Liu, S.-L.*, and L. Saif. 2020. Emerging Viruses without Borders: The Wuhan Coronavirus. Viruses. 12(2). pii: E130. doi: 10.3390/v12020130.
  • Li, A. Xue, Z. Attia, J. Yu, M. Lu, C. Shan, X. Liang, T. Z. Gao, P.-Y. Shi, M. E Peeples, P. N. Boyaka, S.-L. Liu, J. Li. 2020. Vesicular Stomatitis Virus and DNA Vaccines Expressing Zika Virus Nonstructural Protein 1 Induce Substantial but Not Sterilizing Protection against Zika Virus Infection. J. Virol. 94 (17): e00048-20.
  • Li, M.#, A. A. Waheed#,J. Yu#, C. Zeng, H.-Y. Chen,Y.-M. Zheng, A. Feizpour, B. Reinhard, S. Gummuluru,S. Lin, E. O. Freed, and S.-L. Liu*. 2019. TIM-mediated Inhibition of HIV-1 Release Is Antagonized by Nef but Potentiated by SERINC Proteins. Proc. Natl. Acad. Sci. USA. 116 (12): 5705-5714. (#Co-first author)
  • Yu, J, C. Liang, and S.-L. Liu*. 2019. CD4-dependent Modulation of HIV-1 Entry by LY6E. J. Virol. 93 (7): pii: e01866-18.
  • Yu, J and S.-L. Liu*. 2019. Emerging Role of LY6E in Virus-Host Interactions. Viruses. 11 (11). piiE: 1020.
  • Zani, A, L. Zhang, T. M. McMichael, A. Kenney, M. Chemudupati, J. J. Kwiek, S.-L. Liu, and J. S. Yount. 2019. IFITMs Inhibit Cell Fusion Mediated by Trophoblast Syncytins. J. Biol. Chem. Nov 17. pii: jbc.AC119.010611.
  • Yu, J, V. Murthy, and S.-L. Liu*. 2019. Relating GPI-anchored Ly6/uPAR and CD59 Proteins to Viral Infection. Viruses. 11 (11). pii E:1060.
  • Evans, J and S-L. Liu.* 2019. Multifaceted Roles of TIM-family Proteins in Virus-host Interactions. Trends Microbiol. pii: S0966-842X (19)30259-8.
  • Beitari, S, Y. Wang, S.-L. Liu and C. Liang. 2019. HIV-1 Envelope Glycoprotein at the Interface of Host Restriction and Virus Evasion. Viruses, 11(4), 311.
  • Lu S, Z Han, M.-C. Hung, J Xu, Y,Xu, P Zheng, Z.-M. Zheng, L. Zou, Z Li, L Zheng, Y Kang, Y Yang, L He, X.-C. Liao, H Yu, Z Yue, S.-L. Liu* and H Zheng. 2019. Racial Profiling Harms Science. Science 363(6433):1290-1292.
  • Wang, T, Q. Du, Y. Niu, X. Zhang, M. He, Z. Wang, X. Wu, X. Yang, X. Zhao, S.-L. Liu, D. Tong, and Y. Huang. 2019. Cellular p32 Is a Critical Regulator of the Porcine Circovirus Type 2 Nuclear Egress. J. Virol. 93(23). pii: e00979-19.
  • Kodigepalli, K.M, M. Li, S. Bonifati, S.-L. Liu, and L. Wu. 2018. SAMHD1 inhibits epithelial cell transformation in vitro and affects leukemia development in xenograft mice. Cell Cycle. Nov 26. doi: 10.1080/15384101.2018.1550955.
  • Yu, J, and S.-L. Liu*. 2018. The Inhibition of HIV-1 Entry Imposed by Interferon Inducible Transmembrane Proteins Is Independent of Co-Receptor Usage. Viruses 10 (8). Pii: E413.
  • Li, A., J. Yu, M. Lu, Y. Ma, Z. Attia, C. Shan, J. He, X. Liang, M. Xue, R. Jennings, P.-Y. Shi, M. Peeples, S.-L. Liu, P. Boyaka, J. Li. 2018. A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nat. Commun. 9 (1): 3067.
  • Yu, J., C. Liang and S.-L. Liu*. 2017. Interferon-inducible LY6E Protein Promotes HIV Infection. J. Biol. Chem. 292(11):4674-4685.
  • Wang, Y., Q. Pan, Z. Wang, J. Yu, S.-L. Liu and C. Liang. 2017. The V3-loop of HIV-1 Env Determines Viral Susceptibility to IFITM3 Impairment of Viral Infectivity. J. Virol. 91(7). pii: e02441-16.
  • Miller, A.D., M. de Las Heras, J. Yu, F. Zhang, S.-L. Liu, A. E. Vaughan, T. L. Vaughan, R. Rosadio, S. Rocca, G. Palmieri, J. J.Goedert, J. Fujimoto, I. I. Wistuba. 2017. Evidence against a role for Jaagsiekte sheep retrovirus in human lung cancer. Retrovirology. 14(1):3.
  • Markosyan, R.M.#, C. Miao#, Y.-M. Zheng, G.B. Melikian, S.-L. Liu* and F.S. Cohen*. 2016. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is not a Trigger. PLoS Pathogens. 12(1): e1005373. (# Co-first author)
  • Miao, C, M. Li, Y.-M. Zheng, F. S. Cohen and S.-L. Liu*. 2015. Cell-cell Contact Promotes Ebola Virus GP-mediated Infection. Virology. 488:202-215.
  • Yu, J, M. Li, J. Wilkins, S. Ding, T. H. Swartz, A. M. Esposito, Y.-M. Zheng, E. O. Freed, C. Liang, B. K. Chen, and S.-L. Liu*. 2015. IFITM Proteins Antagonize HIV-1 Envelope to Restrict Cell-to-cell Infection. Cell Reports 13: 145-156.
  • Li, K, R. Jia, M. Li, Y.-M. Zheng, C. Miao, Y. Yao, H. Ji, Y. Geng, W. Qiao, Lorraine M. Albritton, Chen Liang, and S.-L. Liu*. 2015. A Sorting Signal Intrinsically Suppresses IFITM1 Restriction of Viral Entry. J. Biol. Chem. 290 (7): 4248-4259.
  • Li, M, S. Ablan, C. Miao, Y.-M. Zheng, M. S. Fuller, P. D. Rennert, W. Maury, M. Johnson, E. O. Freed, and S.-L. Liu*. 2014 TIM Family Proteins Inhibit HIV-1 Release. Proc Natl Acad Sci USA. 111(35): E3699-707.
  • Ding, S, Q. Pan, S.-L. Liu*, and C. Liang*. 2014. HIV-1 mutates to escape IFITM1 restriction. Virology 454-455: 11-24
  • Li K#, R. M. Markosyan#, Y.-M. Zheng#, O. Golfetto, B. Bungart, M. Li, S. Ding, Y. He, C. Liang, J. C. Lee, E. Gratton, F. S. Cohen, and S.-L. Liu*. 2013. IFITM Proteins Restrict Viral Membrane Hemifusion. PLoS Pathogens. 9 (1): e1003124. (# equal contribution)
  • Côté M.#, Y.-M. Zheng#, and S.-L. Liu*. 2012. Membrane fusion and cell entry of XMRV is pH-independent and modulated by the envelope glycoprotein’s cytoplasmic tail. PLoS ONE. 7(3):e33734. (#equal contribution)
  • Côté M#, Y.-M. Zheng#, Kun Li, S-H Xiang, Lorraine M. Albritton and S.-L. Liu*. 2012. Critical Role of a Leucine-Valine Change in the Distinct Low pH Requirements for Membrane Fusion between Two Related Retrovirus Envelopes. J. Bio. Chem. 287(10):7640-51. (#equal contribution)
  • Côté M., Y.-M. Zheng and S.-L. Liu*. 2011. Single Residues in the Surface Subunits of Oncogenic Sheep Retrovirus Envelopes Distinguish Their Receptor-mediated Triggering for Fusion at Low pH and Infection. Virology 421(2): 173-183.
  • Lu J, Q. Pan Q, L. Rong, S.-L. Liu, and Liang C. 2011. The IFITM proteins inhibit HIV-1 infection. J. Virol. 85: 2126-2137.
  • Côté M., Y.-M. Zheng and S.-L. Liu*. 2009.  Receptor Binding and Low pH Coactivate Oncogenic Retrovirus Envelope-mediated Fusion. J. Virol. 83: 1144-11455.
  • Côté M., T. Kucharski, Y.-M. Zheng and S.-L. Liu*. 2008. Enzootic Nasal Tumor Virus Requires a Very Acidic pH for Fusion Activation and Infection. J. Virol. 82: 9023-9034.
  • Côté M., Y.-M. Zheng, L. M. Albritton, and S.-L. Liu*. 2008. The Fusogenicity of Jaagsiekte Sheep Retrovirus Envelope Glycoprotein is Dependent on Low pH and Is Enhanced by the Cytoplasmic Tail Truncations.  J. Virol. 82: 2543-2554.
  • Bertrand P., M. Côté, Y.-M. Zheng, L. M. Albritton, and S.-L. Liu*. 2008. Jaagsiekte Sheep Retrovirus Utilizes a pH-dependent Endocytosis Pathway for Entry. J. Virol. 82:2555-2559.
  • Liu S.-L.* and A. D. Miller. 2007. Oncogenic Transformation by the Jaagsiekte Sheep Retrovirus Envelope Protein. Oncogene. 26:789-01.
  • M. Cote, A. D. Miller, and S.-L. Liu*. 2007. Human RON Receptor Tyrosine Kinase Induces Complete Epithelial-To-Mesenchymal Transition but Impairs Cell Proliferation. Biochem. Biophys. Res. Commun. 360:219-25.
  • Liu S.-L. and A. D. Miller. 2005. Transformation of Madin-Darby Canine kidney (MDCK) Epithelial Cells by Sheep Retrovirus Env Proteins. J. Virol. 79: 927-933.
  • Liu S.-L., C. L. Halbert, and A. D. Miller. 2004. The Env Glycoprotein of Jaagsiekte Sheep Retrovirus Efficiently Pseudotypes the HIV-1 Lentiviral Vectors. J. Virol. 78: 2642-2647.
  • Liu S.–L., M. I. Lerman, and A. D. Miller. 2003. Putative PI3K Binding Motifs in Ovine Betaretrovirus Env Proteins Are Not Essential for Rodent Fibroblast Transformation and PI3K/Akt Activation. J. Virol. 77: 7924-7935.
  • Liu S.-L., F. M. Duh, M. I. Lerman, and A. D. Miller. 2003. Role of Virus Receptor Hyal2 in Oncogenic Transformation of Rodent Fibroblasts by Sheep Betaretrovirus Env Proteins. J. Virol., 77: 2850-2858.
  • Danilkovitch-Miagkova A, F. M. Duh, I. Ikuzmin, D. Angeloni, S.-L. Liu, A. D. Miller,and M. I. LermanMI. 2003.  Candidate Tumor Suppressor HYAL2 Is a Negative Regulator of RON Receptor Tyrosine Kinase and Mediates Transformation of Epithelial Cells by Jaagsiekte Sheep Retrovirus. Proc. Natl. Acad. Sci.  USA. 100: 4580-4585.
  • Liu S.-L., J. M. Mittler, D. C. Nickle, T. Mulvania, D. Shriner, A.G. Rodrigo, B. Kosloff, X. He, L. Corey, and J. I. Mullins. 2002. Selection for Human Immunodeficiency Virus Type 1 Recombinants in A Patient with Rapid Progression to AIDS. J. Virol., 76: 10674-10684.
  • Liu, S.-L., T. Schacker, L. Musey, D. Shriner, M. J. McElrath, L. Corey, and J. I. Mullins. 1997. Divergent Patterns of Progression to AIDS After Infection from the Same Source: HIV-1 Evolution and Antiviral Responses. J. Virol. 71: 4284- 4295.
  • Liu, S.-L., A. G. Rodrigo, R. Shankarappa, G. H. Learn, L. Hsu, O. Davidov, L.-P. Zhao, and J. I. Mullins. 1996. HIV Quasispecies and Resampling. Science. 273: 415-416.